Generalized continuity equations from two-field Schrödinger Lagrangians
نویسندگان
چکیده
منابع مشابه
Quantum master equations from classical Lagrangians with two stochastic forces.
We show how a large family of master equations, describing quantum Brownian motion of a harmonic oscillator with translationally invariant damping, can be derived within a phenomenological approach, based on the assumption that an environment can be simulated by two classical stochastic forces. This family is determined by three time-dependent correlation functions (besides the frequency and da...
متن کاملString-like Lagrangians from a generalized geometry
This note will use Hitchin’s generalized geometry and a model of axionic gravity developed by Warren Siegel in the mid-nineties to show that the construction of Lagrangians based on the inner product arising from the pairing of a vector and its dual can lead naturally to the low-energy Lagrangian of the bosonic string. PACS numbers: 02.40.-k, 04.20.-q, 11.25.-w String theory is one of the most ...
متن کاملSupersymmetry of Generalized Linear Schrödinger Equations in (1+1) Dimensions
We review recent results on how to extend the supersymmetry SUSY formalism in Quantum Mechanics to linear generalizations of the time-dependent Schrödinger equation in (1+1) dimensions. The class of equations we consider contains many known cases, such as the Schrödinger equation for position-dependent mass. By evaluating intertwining relations, we obtain explicit formulas for the interrelation...
متن کاملGeneralized Stochastic Schrödinger Equations for State Vector Collapse
A number of authors have proposed stochastic versions of the Schrödinger equation, either as effective evolution equations for open quantum systems or as alternative theories with an intrinsic collapse mechanism. We discuss here two directions for generalization of these equations. First, we study a general class of norm preserving stochastic evolution equations, and show that even after making...
متن کاملSoliton stability criterion for generalized nonlinear Schrödinger equations.
A stability criterion for solitons of the driven nonlinear Schrödinger equation (NLSE) has been conjectured. The criterion states that p'(v)<0 is a sufficient condition for instability, while p'(v)>0 is a necessary condition for stability; here, v is the soliton velocity and p=P/N, where P and N are the soliton momentum and norm, respectively. To date, the curve p(v) was calculated approximatel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2016
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.94.052122